博客
关于我
目标检测
阅读量:738 次
发布时间:2019-03-21

本文共 4012 字,大约阅读时间需要 13 分钟。

I. INTRODUCTION

Alexnet CNN architecture has become a cornerstone in modern computer vision tasks. Its success relies on several critical innovations, including data augmentation techniques and the ability to generalize from limited training data. This paper explores these aspects in depth, focusing on practical improvements for real-world applications.

II. ARCHITECTURES OF ALEXNET CNN

The Alexnet network comprises several key components: the convolutional layers, pooling operations, features extraction, and classification modules. The network's depth and regularization techniques ensure robust performance across various datasets. This section delves into the design choices that make Alexnet a reliable framework for image processing tasks.

III. PROPOSED METHOD

3.A. Data Augmentation
Data augmentation is a critical step in training deep learning models, particularly when labeled datasets are limited. Common techniques include rotation, flipping, scaling, and translation. These methods help to generate diverse training examples, improving model generalization能力提.

4.B. Training Rotation-Invariant CNN

To address rotation sensitivity, we propose a novel approach that enhances the network's invariance to rotations. By incorporating rotation augmentation during the training phase, the model learns to recognize objects regardless of their orientation in the input images.

IV. OBJECT DETECTION WITH RICNN

A. Object Proposal Detection
Proposal generation is a fundamental step in modern object detection frameworks. It selects potential regions of interest from the input image, which are then evaluated for containing objects. This process is crucial for efficient detection.

B. RICNN-Based Object Detection

R-CNN builds upon Faster R-CNN by introducing a region proposal network (RPN) to generate proposals more efficiently. This approach balances speed and accuracy, making it suitable for real-time applications. The rcnn framework has become a standard in object detection, offering robust performance across diverse scenarios.

V. EXPERIMENTS

A. Data Set Description
The experiments utilize several benchmark datasets, including PASCAL VOC and COCO. These datasets provide a comprehensive evaluation framework for testing the proposed methods. The images contain various object classes and contexts, ensuring robustness of the detection models.

B. Evaluation Metrics

We employ standard metrics for object detection, such as accuracy, recall, precision, and F1-score. These metrics assess both the ability of the model to detect objects and its accuracy in localization. The evaluation process ensures fair comparison across different approaches.

C. Implementation Details and Parameter Optimization

The implementation leverages state-of-the-art tools and frameworks. We use Python with PyTorch for prototyping and TensorFlow for production-ready models. Parameter optimization is performed using techniques like grid search and Bayesian methods to maximize model performance.

D. SVMs Versus Softmax Classifier

This study compares support vector machines (SVMs) and softmax classifiers in the context of object detection. While SVMs excel at linear classification tasks, softmax functions are more suitable for deep learning models due to their ability to handle non-linear decision boundaries.

E. Experimental Results and Comparisons

The experimental results demonstrate the effectiveness of the proposed methods in various scenarios. We compare our approach with existing baselines and highlight improvements in accuracy and efficiency. The experiments also show that the proposed rotation-invariant CNN significantly outperforms traditional methods in rotation-sensitive tasks.

参考文献

[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. 2012.
[2] He K, Zhang X, Ren S, et al. Deep residual learning //Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

转载地址:http://yiggz.baihongyu.com/

你可能感兴趣的文章
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
查看>>
NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_02---大数据之Nifi工作笔记0034
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_说明操作步骤---大数据之Nifi工作笔记0028
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南002---大数据之Nifi工作笔记0069
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO_通道之间传输数据
查看>>
NIO三大组件基础知识
查看>>